Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.004
Filtrar
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506714

RESUMO

The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.


Assuntos
Tomografia com Microscopia Eletrônica , Matriz Extracelular , Transporte Biológico , Movimento Celular , Citosol , Tomografia com Microscopia Eletrônica/métodos , Matriz Extracelular/ultraestrutura
2.
Morphologie ; 107(357): 259-263, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36707352

RESUMO

OBJECTIVE OF THE STUDY: The present work aims to observe the clitoris' extracellular matrix in young and old women with a scanning electron microscope. MATERIALS AND METHODS: After approval of the local research ethics committee, samples of the clitoris body were obtained from cadavers of women between 20 and 40 old (G1) and from cadavers over the age of 60 (G2). The samples were decellularized with NaOH to maintain the extracellular matrix framework, submitted to silver sputter coating, and observed under a scanning electron microscope. RESULTS: The mean age of the cadavers in G1 was 28 years old and 75±6 years old in G2. The groups were composed of 10 cadavers each. It was observed that the collagen was arranged in a disorganized fashion in the samples from the G2 in several regions. There was also a decrease in elastic fibers that anchored the collagen in these samples. The concentration of collagen showed an increase in the older samples in comparison to the G1 samples. Conclusions Female sexual dysfunction is a condition prevalent in a significantly large portion of women and it is more common in elderly women. It is known that the tumescence mechanism requires integrity of the extracellular matrix. The changes observed herein may alter the function of the organ and are similar to observations in studies of men with erectile dysfunction. CONCLUSION: Female sexual dysfunction is a condition prevalent in a significantly large portion of women and it is more common in elderly women. It is known that the tumescence mechanism requires integrity of the extracellular matrix. The changes observed herein may alter the function of the organ and are similar to observations in studies of men with erectile dysfunction. .


Assuntos
Disfunção Erétil , Adulto , Idoso , Feminino , Humanos , Masculino , Envelhecimento , Clitóris , Colágeno , Matriz Extracelular/ultraestrutura , Microscopia Eletrônica de Varredura
3.
J Reconstr Microsurg ; 39(7): 493-501, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36584695

RESUMO

BACKGROUND: Free tissue transfer to cover complex wounds with exposed critical structures results in donor-site morbidity. Perfusion decellularization and recellularization of vascularized composite tissues is an active area of research to fabricate complex constructs without a donor site. Sodium dodecyl sulfate (SDS)-based protocols remain the predominant choice for decellularization despite the deleterious effects on tissue ultrastructure and capillary networks. We aimed to develop an automated decellularization process and compare different SDS perfusion times to optimize the protocol. METHODS: A three-dimensional-printed closed-system bioreactor capable of continuously perfusing fluid through the vasculature was used for decellularization. The artery and vein of rat epigastric fasciocutaneous free flaps were cannulated and connected to the bioreactor. Protocols had varying durations of 1% SDS solution (3, 5, and 10 days) followed by 1 day of 1% Triton X-100 and 1 day of 1x phosphate-buffered saline. The residual DNA was quantified. Microarchitecture of the constructs was assessed with histology, and the vascular network was visualized for qualitative assessment. RESULTS: The structural integrity and the microarchitecture of the extracellular matrix was preserved in the 3- and 5-day SDS perfusion groups; however, the subcutaneous tissue of the 10-day protocol lost its structure. Collagen and elastin structures of the pedicle vessels were not compromised by the decellularization process. Five-day SDS exposure group had the least residual DNA content (p < 0.001). Across all protocols, skin consistently had twice as much residual DNA over the subcutaneous tissues. CONCLUSION: A compact and integrated bioreactor can automate decellularization of free flaps to bioengineer regenerative constructs for future use in reconstruction of complex defects. A decellularization protocol with 5 days of 1% SDS exposure was the most successful to keep the residual DNA content at a minimum while preserving the structural integrity of the tissues.


Assuntos
Retalhos de Tecido Biológico , Ratos , Animais , Dodecilsulfato de Sódio/farmacologia , Dodecilsulfato de Sódio/análise , Dodecilsulfato de Sódio/química , Roedores , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , DNA/análise , DNA/farmacologia , Engenharia Tecidual/métodos , Tecidos Suporte
4.
Front Immunol ; 13: 828634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154150

RESUMO

Visualizing interactions between cells and the extracellular matrix (ECM) mesh is important to understand cell behavior and regulatory mechanisms by the extracellular environment. However, long term visualization of three-dimensional (3D) matrix structures remains challenging mainly due to photobleaching or blind spots perpendicular to the imaging plane. Here, we combine label-free light-sheet scattering microcopy (LSSM) and fluorescence microscopy to solve these problems. We verified that LSSM can reliably visualize structures of collagen matrices from different origin including bovine, human and rat tail. The quality and intensity of collagen structure images acquired by LSSM did not decline with time. LSSM offers abundant wavelength choice to visualize matrix structures, maximizing combination possibilities with fluorescently-labelled cells, allowing visualizing of long-term ECM-cell interactions in 3D. Interestingly, we observed ultrathin thread-like structures between cells and matrix using LSSM, which were not observed by normal fluorescence microscopy. Transient local alignment of matrix by cell-applied forces can be observed. In summary, LSSM provides a powerful and robust approach to investigate the complex interplay between cells and ECM.


Assuntos
Colágeno/ultraestrutura , Matriz Extracelular/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Animais , Bovinos , Colágeno/química , Matriz Extracelular/química , Humanos , Ratos
5.
FEBS Lett ; 596(4): 417-426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990021

RESUMO

PI3Kß is required for invadopodia-mediated matrix degradation by breast cancer cells. Invadopodia maturation requires GPCR activation of PI3Kß and its coupling to SHIP2 to produce PI(3,4)P2 . We now test whether selectivity for PI3Kß is preserved under conditions of mutational increases in PI3K activity. In breast cancer cells where PI3Kß is inhibited, short-chain diC8-PIP3 rescues gelatin degradation in a SHIP2-dependent manner; rescue by diC8-PI(3,4)P2 is SHIP2-independent. Surprisingly, the expression of either activated PI3Kß or PI3Kα mutants rescued the effects of PI3Kß inhibition. In both cases, gelatin degradation was SHIP2-dependent. These data confirm the requirement for PIP3 conversion to PI(3,4)P2 for invadopodia function and suggest that selectivity for distinct PI3K isotypes may be obviated by mutational activation of the PI3K pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Matriz Extracelular/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Podossomos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Diglicerídeos/química , Matriz Extracelular/ultraestrutura , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Mutação , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Podossomos/ultraestrutura , Transdução de Sinais
6.
FEBS Lett ; 596(4): 510-525, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043979

RESUMO

Lysophosphatidylcholine (LPC), the active metabolite of palmitate, triggers hepatocyte death by activating endoplasmic reticulum stress and JNK signalling-mediated lipoapoptosis. However, LPC-induced cytotoxicity in hepatocytes is not well understood. Here, we found for the first time that LPC-induced cell rounding occurred prior to apoptosis. LPC-induced rounding of cells reduced both cell-extracellular matrix (ECM) adhesion and cell-cell junctions, which promoted detachment-induced apoptosis (defined as anoikis) in hepatocytes. Further study revealed that LPC altered cellular morphology and cell adhesion by inhibiting integrin and cadherin signalling-mediated microfilament polymerization. We also found that ECM supplementation and microfilament cytoskeletal stabilization inhibited LPC-induced hepatocyte death by attenuating anoikis. Our data indicate a novel cytotoxic process and signalling pathway induced by LPC.


Assuntos
Anoikis/efeitos dos fármacos , Caderinas/genética , Adesão Celular/efeitos dos fármacos , Integrinas/genética , Junções Intercelulares/efeitos dos fármacos , Lisofosfatidilcolinas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Anoikis/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caderinas/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Integrinas/metabolismo , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Vinculina/genética , Vinculina/metabolismo
7.
Folia Biol (Praha) ; 68(3): 112-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36689318

RESUMO

This is the first histological and molecular analysis of two chondrosarcomas with target-like chondrocytes that were compared with a group of conventional chondrosarcomas and enchondromas. The unique histological feature of target-like chondrocytes is the presence of unusual hypertrophic eosinophilic APAS-positive perichondrocytic rings (baskets). In the sections stained with Safranin O/Fast green, the outer part of the ring was blue and the material in the lacunar space stained orange, similarly to intercellular regions. Immunohistochemical examination showed strong positivity for vimentin, factor XIIIa, cyclin D1, osteonectin, B-cell lymphoma 2 apoptosis regulator (Bcl-2), p53 and p16. The S-100 protein was positive in 25 % of neoplastic cells. Antibodies against GFAP, D2-40 (podoplanin), CD99, CKAE1.3 and CD10 exhibited weak focal positivity. Pericellular rings/baskets contained type VI collagen in their peripheral part, in contrast to the type II collagen in intercellular interterritorial spaces. Ultrastructural examination revealed that pericellular rings contained an intralacunar component composed of microfibrils with abundant admixture of aggregates of dense amorphous non-fibrillar material. The outer extralacunar zone was made up of a layer of condensed thin collagen fibrils with admixture of non-fibrillar dense material. NGS sequencing identified a fusion transcript involving fibronectin 1 (FN1) and fibroblast growth factor receptor 2 (FGFR2) at the RNA level. At the DNA level, no significant variant was revealed except for the presumably germline variant in the SPTA1 gene.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Condrócitos/química , Condrócitos/patologia , Condrócitos/ultraestrutura , Imuno-Histoquímica , Condrossarcoma/química , Condrossarcoma/diagnóstico , Condrossarcoma/patologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas S100/metabolismo , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo
8.
FASEB J ; 36(1): e22067, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914140

RESUMO

The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.


Assuntos
Córnea/metabolismo , Fibroblastos/metabolismo , Pressão Osmótica/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP2 , Esferoides Celulares/metabolismo , Córnea/ultraestrutura , Estresse do Retículo Endoplasmático , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas do Olho/metabolismo , Feminino , Fibroblastos/ultraestrutura , Humanos , Masculino , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Esferoides Celulares/ultraestrutura
9.
Cryobiology ; 105: 71-82, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848188

RESUMO

To overcome the shortage of organ donors and morbidity and mortality caused by lifetime immunosuppression, development of a transplantable graft to permanently replace the organ function is required. This study is focused on the effects of a freeze-thaw process and cryoprotectants on the ultrastructure and composition of decellularization scaffolds. Results showed that cryoprotectants and freezing temperatures had significant effects on the decellularization scaffold. The vascular network integrity at -20 °C was better than that at -80 °C. For low-concentration cryoprotectants, 10% dimethyl sulfoxide and 5% trehalose could achieve a better balance between preserving the vascular tree and decellularization. For high-concentration cryoprotectants (vitrification solutions VS55 and VS83), the vascular network integrity was best because of the absence of freezing damage and ice-induced disruption of cells, but the decellularization effect was poor because the cells remained in the scaffold. Collagen, elastic fiber, protein, and mechanical properties of the scaffold could be retained after decellularization using the freeze-thaw method. Further studies and further optimization of the freeze-thaw decellularization protocol are necessary for clinical applications.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Criopreservação/métodos , Crioprotetores/análise , Crioprotetores/farmacologia , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Congelamento , Rim , Ratos , Engenharia Tecidual/métodos , Tecidos Suporte/química
10.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740248

RESUMO

The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sistemas CRISPR-Cas/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Muda/genética , Mucinas/metabolismo , Mutação , Domínios Proteicos/genética
11.
PLoS One ; 16(10): e0258699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714842

RESUMO

We investigated the characteristics of extracellular matrix (ECM) in the soft tissue of two frozen baby woolly mammoths (Mammuthus primigenius) that died and were buried in Siberian permafrost approximately 40,000 years ago. Morphological and biochemical analyses of mammoth lung and liver demonstrated that those soft tissues were preserved at the gross anatomical and histological levels. The ultrastructure of ECM components, namely a fibrillar structure with a collagen-characteristic pattern of cross-striation, was clearly visible with transmission and scanning electron microscopy. Type I and type IV collagens were detected by immunohistochemical observation. Quantitative amino acid analysis of liver and lung tissues of the baby mammoths indicated that collagenous protein is selectively preserved in these tissues as a main protein. Type I and type III collagens were detected as major components by means of liquid chromatography-mass spectrometry analysis after digestion with trypsin. These results indicate that the triple helical collagen molecule, which is resistant to proteinase digestion, has been preserved in the soft tissues of these frozen mammoths for 40,000 years.


Assuntos
Colágeno/análise , Matriz Extracelular/ultraestrutura , Fígado/metabolismo , Pulmão/metabolismo , Mamutes/metabolismo , Animais , Cromatografia Líquida , Colágeno/genética , Colágeno Tipo I/análise , Colágeno Tipo I/genética , Colágeno Tipo IV/análise , Colágeno Tipo IV/genética , Matriz Extracelular/metabolismo , Feminino , Fósseis/ultraestrutura , Fígado/ultraestrutura , Pulmão/ultraestrutura , Espectrometria de Massas , Pergelissolo , Preservação Biológica , Análise de Sequência de Proteína , Sibéria
12.
J Struct Biol ; 213(4): 107791, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34520869

RESUMO

Cryo-electron tomography is the highest resolution tool available for structural analysis of macromolecular complexes within their native cellular environments. At present, data acquisition suffers from low throughput, in part due to the low probability of positioning a cell such that the subcellular structure of interest is on a region of the electron microscopy (EM) grid that is suitable for imaging. Here, we photo-micropatterned EM grids to optimally position endothelial cells so as to enable high-throughput imaging of cell-cell contacts. Lattice micropatterned grids increased the average distance between intercellular contacts and thicker cell nuclei such that the regions of interest were sufficiently thin for direct imaging. We observed a diverse array of membranous and cytoskeletal structures at intercellular contacts, demonstrating the utility of this technique in enhancing the rate of data acquisition for cellular cryo-electron tomography studies.


Assuntos
Comunicação Celular , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Junções Intercelulares/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Caderinas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Junções Intercelulares/metabolismo , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Reprodutibilidade dos Testes
13.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1558-1566, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34568889

RESUMO

Tumor acidic microenvironment is the main feature of many solid tumors. As a part of the tumor microenvironment, it has a profound impact on the occurrence and development of tumors. However, the research on how tumor cells sense the changes of the external microenvironment and how the intracellular subcellular structures transmit the signals from extracellular to intracellular is unclear. In this study, we identify that the acidic microenvironment enhances cancer cell motility, and the expression of membrane-anchored membrane type 1-matrix metalloproteinase is also associated with cell motility, which indicates more degradation of the ECM under the acidic microenvironment. Moreover, the expression of cofilin is low in the acidic microenvironment, and the F-actin filaments are distributed more along the cells. The cytoskeletal F-actin changes are consistent with the potential of a high-invasive phenotype. Further study reveals the upstream control of the signal transductions from extracellular to intracellular, that is, the integrin ß1 functions to trigger the biological responses under the acidic microenvironment. Our results demonstrate that the acidic microenvironment enhances cancer cell motility through the integrin ß1/cofilin/F-actin signal axis. This study clearly shows the scheme of the signal transmissions from extracellular to intracellular and further reveals the cytoskeletal roles for the contributions of cancer cell motility under acidic microenvironment, which provides new targets for cancer intervention from the biochemical and biophysical perspectives.


Assuntos
Fatores de Despolimerização de Actina/genética , Actinas/genética , Movimento Celular/genética , Integrina beta1/genética , Metaloproteinase 1 da Matriz/genética , Células A549 , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Integrina beta1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/metabolismo , Modelos Biológicos , Transdução de Sinais , Microambiente Tumoral/genética
14.
J Struct Biol ; 213(4): 107781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411695

RESUMO

The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.


Assuntos
Cartilagem/ultraestrutura , Microscopia Crioeletrônica/métodos , Lâmina de Crescimento/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Tíbia/ultraestrutura , Animais , Membrana Basal/ultraestrutura , Vasos Sanguíneos/citologia , Vasos Sanguíneos/ultraestrutura , Desenvolvimento Ósseo , Calcificação Fisiológica , Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Morfogênese , Tíbia/citologia , Tíbia/crescimento & desenvolvimento
15.
J Tissue Eng Regen Med ; 15(10): 841-851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327854

RESUMO

The cornea serves as the main refractive component of the eye with the corneal stroma constituting the thickest component in a stratified layered system of epithelia, stroma, and endothelium. Current treatment options for patients suffering from corneal diseases are limited to transplantation of a human donor cornea (keratoplasty) or to implantation of an artificial cornea (keratoprosthesis). Nevertheless, donor shortage and failure of artificial corneas to integrate with local tissue constitute important problems that have not been yet circumvented. Recent advances in biofabrication have made great progress toward the manufacture of tailored biomaterial templates with the potential of guiding partially or totally the regeneration process of the native cornea. However, the role of the corneal stroma on current tissue engineering strategies is often neglected. Here, we achieved a tissue-engineered corneal stroma substitute culturing primary keratocytes on scaffolds prepared via melt electrowriting (MEW). Scaffolds were designed to contain highly organized micrometric fibers to ensure transparency and encourage primary human keratocytes to self-orchestrate their own extracellular matrix deposition and remodeling. Results demonstrated reliable cell attachment and growth over a period of 5 weeks and confirmed the formation of a dense and highly organized de novo tissue containing collagen I, V, and VI as well as Keratocan, which resembled very closely the native corneal stoma. In summary, MEW brings us closer to the biofabrication of a viable corneal stroma substitute.


Assuntos
Substância Própria/fisiologia , Eletroquímica , Engenharia Tecidual , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Poliésteres/química , Impressão Tridimensional , Tecidos Suporte
16.
J Biomed Mater Res A ; 109(12): 2493-2505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34096176

RESUMO

Long-term in vivo observation in large animal model is critical for evaluating the potential of small diameter tissue engineering vascular graft (SDTEVG) in clinical application, but is rarely reported. In this study, a SDTEVG is fabricated by the electrospinning of poly(ε-caprolactone) and subsequent heparin modification. SDTEVG is implanted into canine's abdominal aorta for 511 days in order to investigate its clinical feasibility. An active and robust remodeling process was characterized by a confluent endothelium, macrophage infiltrate, extracellular matrix deposition and remodeling on the explanted graft. The immunohistochemical and immunofluorescence analysis further exhibit the regeneration of endothelium and smooth muscle layer on tunica intima and tunica media, respectively. Thus, long-term follow-up reveals viable neovessel formation beyond graft degradation. Furthermore, the von Kossa staining exhibits no occurrence of calcification. However, although no TEVG failure or rupture happens during the follow-up, the aneurysm is found by both Doppler ultrasonic and gross observation. Consequently, as-prepared TEVG shows promising potential in vascular tissue engineering if it can be appropriately strengthened to prevent the occurrence of aneurysm.


Assuntos
Prótese Vascular , Vasos Sanguíneos/transplante , Heparina/química , Poliésteres/química , Aneurisma/prevenção & controle , Animais , Aorta Abdominal/transplante , Cães , Endotélio Vascular/crescimento & desenvolvimento , Matriz Extracelular/ultraestrutura , Humanos , Macrófagos , Músculo Liso Vascular/crescimento & desenvolvimento , Projetos Piloto , Tecidos Suporte , Túnica Íntima , Túnica Média
17.
Sci Rep ; 11(1): 13185, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162971

RESUMO

Medial degeneration is a common histopathological finding in aortopathy and is considered a mechanism for dilatation. We investigated if medial degeneration is specific for sporadic thoracic aortic aneurysms versus nondilated aortas. Specimens were graded by pathologists, blinded to the clinical diagnosis, according to consensus histopathological criteria. The extent of medial degeneration by qualitative (semi-quantitative) assessment was not specific for aneurysmal compared to nondilated aortas. In contrast, blinded quantitative assessment of elastin amount and medial cell number distinguished aortic aneurysms and referent specimens, albeit with marked overlap in results. Specifically, the medial fraction of elastin decreased from dilution rather than loss of protein as cross-sectional amount was maintained while the cross-sectional number, though not density, of smooth muscle cells increased in proportion to expansion of the media. Furthermore, elastic lamellae did not thin and interlamellar distance did not diminish as expected for lumen dilatation, implying a net gain of lamellar elastin and intralamellar cells or extracellular matrix during aneurysmal wall remodeling. These findings support the concepts that: (1) medial degeneration need not induce aortic aneurysms, (2) adaptive responses to altered mechanical stresses increase medial tissue, and (3) greater turnover, not loss, of mural cells and extracellular matrix associates with aortic dilatation.


Assuntos
Aorta/anatomia & histologia , Aneurisma da Aorta Torácica/patologia , Túnica Média/ultraestrutura , Adaptação Fisiológica , Adulto , Idoso , Aorta/química , Doença da Válvula Aórtica Bicúspide/patologia , Contagem de Células , Comorbidade , Elastina/análise , Matriz Extracelular/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/ultraestrutura , Método Simples-Cego , Coloração e Rotulagem , Remodelação Vascular
18.
Aging (Albany NY) ; 13(11): 14910-14923, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111029

RESUMO

Due to the low percentage of collagen, the rigid support capacity of fat grafts remains unsatisfactory for some clinical applications. In this study, we evaluated a strategy in which adipose matrix complex (AMC) was collected via a mechanical process and transplanted for supportive filling of the face. Our AMC samples were collected from adipose tissue by a filter device consisting of a sleeve, three internal sieves, and a filter bag (100 mesh). AMC derived from adipose tissue had fewer cells than Coleman fat, but much higher levels of collagen and stiffness. Retention rates 90 days after transplantation in nude mice were higher for AMC than for Coleman fat (75±7.5% vs. 42±13.5%; P < 0.05). In addition, AMC maintained a higher stiffness (~6 kPa vs. ~2 kPa; P < 0.01) and stably retained a higher level of collagen. Our findings demonstrate that mechanical collection of AMC from adipose tissue is a practical method for improving fat graft retention and rigid support. This strategy has the potential to improve the quality of lipoaspirates for patients requiring rigid supportive filling.


Assuntos
Tecido Adiposo/transplante , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/ultraestrutura , Animais , Matriz Extracelular/ultraestrutura , Feminino , Humanos , Camundongos Nus
19.
PLoS One ; 16(5): e0246221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999919

RESUMO

Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.


Assuntos
Aorta/ultraestrutura , Doenças Cardiovasculares/diagnóstico por imagem , Colágeno/ultraestrutura , Matriz Extracelular/ultraestrutura , Engenharia Tecidual , Animais , Aorta/patologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Colágeno/química , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Matriz Extracelular/genética , Próteses Valvulares Cardíacas , Humanos , Microscopia Eletrônica de Varredura , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/ultraestrutura , Suínos , Trombose/patologia , Tecidos Suporte
20.
Biomed Res Int ; 2021: 6657206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860049

RESUMO

The study is aimed at investigating the effects of Ginkgo biloba extract EGB761 on renal tubular damage and endoplasmic reticulum stress (ERS) in diabetic kidney disease (DKD). A total of 50 C57BL/6 N mice were randomly divided into the normal group, DKD group, DKD+EGB761 group (36 mg/kg), and DKD+4-phenylbutyrate (4-PBA) group (1 g/kg). The DKD model was replicated by high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). Renal tubular epithelial cells (HK-2) were divided into the control group, high-glucose group (30 mmol/L), EGB761 group (40 mg/L, 20 mg/L, 10 mg/L), TM group, and TM+4-PBA group. After 8 weeks of administration, expressions of serum creatinine (Scr), blood urea nitrogen (BUN), 24 h urinary protein (24 h Pro), fasting blood glucose (FBG), ß 2-microglobulin (ß 2-MG), and retinol binding protein 4 (RBP4) of mice were tested. The pathological changes of renal tissue were observed. The expressions of extracellular matrix (ECM) accumulation and epithelial-mesenchymal transition (EMT) markers α-smooth muscle actin (α-SMA), E-cadherin, fibronectin, and collagen IV, as well as the ERS markers GRP78 and ATF6, were tested by Western blot, qPCR, immunohistochemistry, or immunofluorescence. EGB761 could decrease the Scr, BUN, 24 h Pro, and FBG levels in the DKD group, alleviate renal pathological injury, decrease urine ß 2-MG, RBP4 levels, and decrease the expression of α-SMA, collagen IV, fibronectin, and GRP78, as well as ATF6, while increase the expression of E-cadherin. These findings demonstrate that EGB761 can improve renal function, reduce tubular injury, and ameliorate ECM accumulation and EMT in DKD kidney tubules, and the mechanism may be related to the inhibition of ERS.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Matriz Extracelular/metabolismo , Mesoderma/patologia , Extratos Vegetais/uso terapêutico , Animais , Linhagem Celular , Linhagem Celular Transformada , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/ultraestrutura , Ginkgo biloba , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/lesões , Túbulos Renais/fisiopatologia , Túbulos Renais/ultraestrutura , Masculino , Mesoderma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/urina , Microglobulina beta-2/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...